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Abstract

We consider four main goals when fitting spatial linear models: 1) estimating covariance

parameters, 2) estimating fixed effects, 3) kriging (making point predictions), and 4) block-

kriging (predicting the average value over a region). Each of these goals can present dif-

ferent challenges when analyzing large spatial data sets. Current research uses a variety

of methods, including spatial basis functions (reduced rank), covariance tapering, etc, to

achieve these goals. However, spatial indexing, which is very similar to composite likeli-

hood, offers some advantages. We develop a simple framework for all four goals listed

above by using indexing to create a block covariance structure and nearest-neighbor pre-

dictions while maintaining a coherent linear model. We show exact inference for fixed

effects under this block covariance construction. Spatial indexing is very fast, and simula-

tions are used to validate methods and compare to another popular method. We study var-

ious sample designs for indexing and our simulations showed that indexing leading to

spatially compact partitions are best over a range of sample sizes, autocorrelation values,

and generating processes. Partitions can be kept small, on the order of 50 samples per

partition. We use nearest-neighbors for kriging and block kriging, finding that 50 nearest-

neighbors is sufficient. In all cases, confidence intervals for fixed effects, and prediction

intervals for (block) kriging, have appropriate coverage. Some advantages of spatial

indexing are that it is available for any valid covariance matrix, can take advantage of par-

allel computing, and easily extends to non-Euclidean topologies, such as stream networks.

We use stream networks to show how spatial indexing can achieve all four goals, listed

above, for very large data sets, in a matter of minutes, rather than days, for an example

data set.
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Introduction

The general linear model, including regression and analysis of variance (ANOVA), is still a

mainstay in statistics,

Y ¼ Xβþ ε ð1Þ

where Y is an n × 1 vector of response random variables, X is the design matrix with covariates

(fixed explanatory variables, containing any combination of continuous, binary, or categorical

variables), β is a vector of parameters, and ε is a vector of zero-mean random variables, which

are classically assumed to be uncorrelated, var(ε) = σ2I. The spatial linear model is a version of

Eq (1) where var(ε) = V, and V is a patterned covariance matrix that is modeled using spatial

relationships. Generally, spatial relationships are of two types: spatially-continuous point-ref-

erenced data, often called geostatistics, and finite sets of neighbor-based data, often called lat-

tice or areal data [1]. For geostatistical data, we associate random variables in Eq (1) with their

spatial locations by denoting the random variable as Y(si); i = 1, . . ., n, and ε(si); i = 1, . . ., n,

where si is a vector of spatial coordinates for the ith point, and the i, jth element of V is cov(ε
(si), ε(sj)). Table 1 provides a list of all of the main notation used in this article.

The main goals from a geostatistical linear model are to 1) estimate V, 2) estimate β, 3)

make predictions at unsampled Y(sj), where j = n + 1, . . ., N, form a set of spatial locations

without observations, and 4) for some region B, make a prediction of the average value

YðBÞ ¼
R

BYðsÞds=jBj, where jBj is the area of B. Estimation and prediction both require

Oðn2Þ for V storage and Oðn3Þ operations for V−1 [2], which, for massive data sets, is compu-

tationally expensive and may be prohibitive. Our overall objective is to use spatial indexing

ideas to make all four goals possible for very large spatial data sets. We maintain the moment-

based approach of classical geostatistics, which is distribution free, and we work to maintain a

coherent model of stationarity and a single set of parameter estimates.

Table 1. Commonly-used symbols and their meanings in this paper.

Y(s) response random variable at spatial location s

s vector of spatial coordinates

Y random vector of response variables

y observed data vector of response variables

X design matrix of fixed effects

β vector of fixed-effect parameters

ε vector of spatially-autocorrelated random errors

V covariance matrix of ε

θ vector of covariance parameters

c0 covariance between data and prediction location

Lðθ; yÞ likelihood of θ given data y

Txx
PP

i¼1
X0iV̂ � 1

i;i Xi

txy
PP

i¼1
X0iV̂

� 1
i;i yi

Q
h
T� 1

xx X1V̂ � 1
1;1
jT� 1

xx X2V̂ � 1
2;2
j . . . jT� 1

xx XPV̂ � 1
P;P

i

Wxx
PP� 1

i¼1

PP
j¼iþ1
½X0iV

� 1

i;i Vi;jV
� 1

j;j Xj þ ðX
0

iV
� 1

i;i Vi;jV
� 1

j;j XjÞ
0
�

Nj 0-1 matrix to subset y to the neighborhood of the jth location

Ĉ an estimator of varðβ̂bdÞ

https://doi.org/10.1371/journal.pone.0291906.t001
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Quick review of the spatial linear model

When the outcome of the random variable Y(si) is observed, we denote it y(si), which are con-

tained in the vector y. These observed data are used first to estimate the autocorrelation

parameters in V, which we will denote as θ. In general, V can have n(n + 1)/2 parameters, but

use of distance to describe spatial relationships typically reduces this to just 3 or 4 parameters.

An example of how V depends on θ is given by the exponential autocorrelation model, where

the i, jth element of V is

cov½εðsiÞ; εðsjÞ� ¼ t
2expð� di;j=rÞ þ Z

2Iðdi;j ¼ 0Þ ð2Þ

where θ = (τ2, η2, ρ)0, di,j is the Euclidean distance between si and sj, and Ið�Þ is an indicator

function, equal to 1 if its argument is true, otherwise it is 0. The parameter η2 is often called

the “nugget effect,” τ2 is called the “partial sill,” and ρ is called the “range” parameter. In Eq

(2), the variances are constant (stationary), which we denote σ2 = τ2 + η2, when di,j = 0. Many

other examples of autocorrelation model are given in [1, 3].

We will use restricted maximum likelihood (REML) [4, 5] to estimate parameters of V.

REML is less biased than full maximum likelihood [6]. REML estimates of covariance parame-

ters are obtained by minimizing

LðθjyÞ ¼ logjVθj þ r0θV
� 1

θ rθ þ logjX0V� 1

θ Xj þ c ð3Þ

for θ, where Vθ depends on spatial autocorrelation parameters θ, and rθ ¼ y � Xβ̂θ,

β̂θ ¼ ðX
0V� 1

θ XÞ� 1X0V� 1

θ y, and c is a constant that does not depend on θ. It has been shown [7,

8] that Eq (3) form unbiased estimating equations for covariance parameters, so Gaussian data

are not strictly necessary. After Eq (3) has been minimized for θ, then these estimates, call

them θ̂, are used in the autocorrelation model, e.g. Eq 2, for all of the covariance values to cre-

ate V̂. This is the first use of data y. The usual frequentist method for geostatistics, with a long

tradition [9], “uses the data twice” [10]. Now V̂, along with a second use of the data, are used

to estimate regression coefficients or make predictions at unsampled locations. By plugging V̂
into the well-known best-linear-unbiased estimate (BLUE) of β for Eq (1), we obtain the

empirical best-linear-unbiased estimate (EBLUE), e.g. [11],

β̂ ¼ ðX0V̂ � 1XÞ� 1X0V̂ � 1y ð4Þ

The estimated variance of Eq (4) is

^varðβ̂Þ ¼ ðX0V̂ � 1XÞ� 1 ð5Þ

Let a single unobserved location be denoted s0, with a covariate vector of x0 (containing the

same covariates and length as a row of X). Then empirical best-linear-unbiased prediction

(EBLUP) [12] at an unobserved location is

Ŷ ðs0Þ ¼ x0
0
β̂ þ ĉ 0

0
V̂ � 1ðy � Xβ̂Þ; ð6Þ

where ĉ0 � ^covðε; εðs0ÞÞ, using the same autocorrelation model, e.g. Eq (2), and estimated

parameters, θ̂, that were used to develop V̂. Note that if we condition on V̂ as fixed, then Eq

(6) is a linear combination of y, and can also be written as η0
0
y when Eq (4) is substituted for β̂.

The prediction Eq (6) can be seen as the conditional expectation of Y(s0)|y with plug-in values
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for β, V, and c. The estimated variance of EBLUP is,

^varðŶ ðs0ÞÞ ¼ ŝ
2
0
� ĉ 0

0
V̂ � 1ĉ0 þ ðx0 � X0V̂ � 1ĉ0Þ

0
ðX0V̂ � 1XÞ� 1

ðx0 � X0V̂ � 1ĉ0Þ ð7Þ

where ŝ2
0

is the estimated variance of Y(s0) using the same covariance model as V̂. [12]

Spatial methods for big data

Here, we give a brief overview of the most popular methods currently used for large spatial

data sets. There are various ways to classify such methods. For our purposes, there are two

broad approaches. One is to adopt a Gaussian Process (GP) model for the data and then

approximate the GP. The other is to model locally, essentially creating smaller data sets and

using existing models.

There are several good reviews on methods for approximating the GP [13–16]. These meth-

ods include low rank ideas such as radial smoothing [17–19], fixed rank kriging [20–23], pre-

dictive processes [24, 25], and multiresolution Gaussian processes [26, 27]. Other approaches

include covariance tapering [28–30], stochastic partial differential equations [31, 32], and fac-

toring the GP into a series of conditional distributions [33, 34], which was extended to nearest

neighbor Gaussian processes [35–38] and other sparse matrix improvements [39–41]. The

reduced rank methods are very attractive, and allow models for situations where distances are

non-Euclidean (for a review and example, see [42]), as well as fast computation.

Modeling locally involves an attempt to maintain classical geostatistical models by creating

subsets of the data, using existing methods on subsets, and then making inference from sub-

sets. For example, [43, 44] created local data sets in a spatial moving window, and then esti-

mated variograms and used ordinary kriging within those windows. This idea allows for

nonstationary variances but forces an unnatural asymmetric autocorrelation because the range

parameter changes when moving a window. Nor does it estimate β, but rather there is a differ-

ent β for every point in space. Another early idea was to create a composite likelihood by tak-

ing products of subset-likelihoods and optimizing for autocorrelation parameters θ [45], and

then θ̂ can be held fixed when predicting in local windows. However, this does not solve the

problem of estimating a single β.

More recently, two broad approaches have been developed for modeling locally. One is a

‘divide and conquer’ approach, which is similar to [45]. Here, it is permissible to re-use data in

subsets, or not use some data at all [46–48], with an overview provided by [49]. Another

approach is a simple partition of the data into groups, where partitions are generally spatially

compact [50–53]. This is sensible for estimating covariance parameters and will provide an

unbiased estimate for β̂, however the estimated variance ^varðβ̂Þ will not be correct. Continuity

corrections for predictions are provided, but predictions may not be efficient near partition

boundaries.

A blocked structure for the covariance matrix based on spatially-compact groupings was

proposed by [54], who then formulated a hybrid likelihood based on blocks of different sizes.

The method that we feature is most similar to [54], but we show that there is no need for a

hybrid likelihood, and that our approach is different than composite likelihood. Our spatial

indexing approach is very simple and extends easily to random effects, and accommodates vir-

tually any covariance matrix that can be constructed. We also show how to obtain the exact

covariance matrix of estimated fixed effects without any need for computational derivatives or

numerical approximations.
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Motivating example

One of the attractive features of the method that we propose is that it will work with any valid

covariance matrix. To motivate our methods, consider a stream network (Fig 1a). This is the

Mid-Columbia River basin, located along part of the border between the states of Washington

Fig 1. Study area for the motivating example. (a) A stream network from the mid-Columbia River basin, where purple points show

9521 sample locations that measured mean water temperature during August. (b) Most of the stream network is located in

Washington and Oregon in the United States. (c) A close-up of the black rectangle in (a). The orange points are prediction locations.

https://doi.org/10.1371/journal.pone.0291906.g001
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and Oregon, USA, with a small part of the network in Idaho as well (Fig 1b). The stream net-

work consists of 28,613 stream segments. Temperature loggers were placed at 9,521 locations

on the stream network, indicated by purple dots in Fig 1a. A close-up of the stream network,

indicated by the dark rectangle in Fig 1a, is given as Fig 1c, where we also show a systematic

placement of prediction locations with orange dots. There are 60,099 prediction locations that

will serve as the basis for point predictions. The response variable is an average of daily maxi-

mum temperatures in August from 1993 to 2011. Explanatory variables obtained for both

observations and prediction sites included elevation at temperature logger site, slope of stream

segment at site, percentage of upstream watershed composed of lakes or reservoirs, proportion

of upstream watershed composed of glacial ice surfaces, mean annual precipitation in water-

shed upstream of sensor, the northing coordinate, base-flow index values, upstream drainage

area, a canopy value encompassing the sensor, mean August air temperature from a gridded

climate model, mean August stream discharge, and occurrence of sensor in tailwater down-

stream from a large dam (see [55] for more details).

These data were previously analyzed in [55] with geostatistical models specific to stream

networks [11, 56]. The models were constructed as spatial moving averages, e.g., [57, 58], also

called process convolutions, e.g., [59, 60]. Two basic covariance matrices are constructed, and

then summed. In one, random variables were constructed by integrating a kernel over a white

noise process strictly upstream of a site, which are termed “tail-up” models. In the other con-

struction, random variables were created by integrating a kernel over a white noise process

strictly downstream of a site, which are termed “tail-down” models. Both types of models

allow analytical derivation of autocovariance functions, with different properties. For tail-up

models, sites remain independent so long as they are not connected by water flow from an

upstream site to a downstream site. This is true even if two sites are very close spatially, but

each on a different branch just upstream of a junction. Tail-down models are more typical as

they allow spatial dependence that is generally a function of distance along the stream, but

autocorrelation will still be different for two pairs of sites that are an equal distance apart,

when one pair is connected by flow, and the other is not.

When considering big data, such as those in Fig 1, we considered the methods as described

in the previous section. The basis-function/reduced rank approaches would be difficult for

stream networks because an inspection of Fig 1 reveals that we would need thousands of basis

functions in order to cover all headwater stream segments and run the basis functions down-

stream only. A separate set of basis functions would be needed that ran upstream, and then

weighting would be required to split the basis functions at all stream junctions. In fact, all of

the GP model approximation methods would require modifying a covariance structure that

has already been developed specifically for steam networks. The spatial indexing method that

we propose below is much simpler, requiring no modification to the covariance structure, and,

as we will demonstrate, proved to be adequate, not only for stream networks, but more

generally.

Objectives

In what is to follow, we will use spatial indexing, leading to covariance matrix partitioning and

local predictions. We will use the acronym SPIN, for SPatial INdexing, as the collection of

methods for covariance parameter estimation, fixed effects estimation, and point and block

prediction. Our objective is to show how each of these inferences can be made computationally

faster with SPIN, and still provide unbiased results with valid confidence/prediction intervals.

This article uses several acronyms. Table 2 provides a handy reference to the meaning of all

acronyms used here.
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Methods

The main advantage of the SPIN method is due to the way the covariance matrix is indexed

and partitioned to allow for faster evaluation of the REML equations, Eq (3), whose optimiza-

tion is iterative, requiring many evaluations involving the inverse of the covariance matrix.

This optimization provides estimation of the covariance parameters, which we describe next.

Estimation of covariance parameters

Consider the covariance matrix to be used in Eqs (4) and (6). First, we index the data to create

a covariance matrix with P partitions based on the indexes {i; i = 1, . . ., P},

V ¼

V1;1 V1;2 � � � V1;P

V2;1 V2;2 � � � V2;P

..

. ..
. . .

. ..
.

VP;1 VP;2 � � � VP;P

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð8Þ

In a similar way, imagine a corresponding indexing and partition of the spatial linear model

as,

y1

y2

..

.

yP

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

X1

X2

..

.

XP

0

B
B
B
B
B
@

1

C
C
C
C
C
A

βþ

ε1

ε2

..

.

εP

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð9Þ

Now, for the purposes of estimating covariance parameters, we maximize the REML equations

Table 2. Acronyms used in this paper.

ANOVA analysis of variance

BLUE best linear unbiased estimation

CI90 coverage rates for 90% confidence intervals

COMP spatially compact partitioning

COPE covariance parameter estimation

EBLUE empirical best-linear-unbiased estimation

EBLUP empirical best-linear-unbiased prediction

FEFE fixed-effects parameter estimation

GEOSTAT geostatistical simulation method

GP Gaussian process

MIXD mix of random and spatially compact partitioning

NNGP nearest-neighbor Gaussian processes method

PI90 coverage rates for 90% prediction intervals

RAND random partitioning

REML restricted maximum likelihood

RMSE root mean-squared error

RMSPE root mean-squared-prediction error

SPIN computationally-fast inference methods using spatial indexing

SUMSINE simulation method based on random sine waves

https://doi.org/10.1371/journal.pone.0291906.t002
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based on a covariance matrix,

Vpart ¼

V1;1 0 � � � 0

0 V2;2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � VP;P

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð10Þ

rather than Eq (8). The computational advantage of using Eq (10) in Eq (3) is that we only

need to invert matrices of size Vi,i for all i, and, because we have large amounts of data, we

assume that {Vi,i} are sufficient for estimating covariance parameters. If the size of Vi,i is fixed,

then the computational burden grows linearly with n. Also, Eq (10) in Eq (3) allows for use of

parallel computing because each Vi,i can be inverted independently.

Note that we are not concerned with the variance of θ̂, which is generally true in classical

geostatistics. Rather, θ contains nuisance parameters that require estimation in order to esti-

mate fixed effects and make predictions. Because data are massive, we can afford to lose some

efficiency in estimating the covariance parameters. For example, sample sizes� 125 are gener-

ally recommended for estimating the covariance matrix for geostatistical data [61]. REML is

for the most part unbiased. If we have thousands of samples, and if we imagine partitioning

the spatial locations into data sets (in ways that we describe later), then using Eq (10) in Eq (3)

is, essentially, using REML many times to obtain a pooled estimate of θ̂.

Partitioning the covariance matrix is most closely related to the idea of quasi-likelihood

[62], composite likelihood [45] and divide and conquer [63]. However, for REML, they are not

exactly equivalent. From Eq (3), the term logjX0V� 1

θ Xj using composite likelihood,
QP

i¼1
LðθjyiÞ, results in

XP

i¼1

logjX0iV
� 1

i;i Xij

while using Vpart results in

log

�
�
�
�
�

XP

i¼1

X0iV
� 1

i;i Xi

�
�
�
�
�

An advantage to spatial indexing, when compared to composite likelihood, can be seen when

X contains columns with many zeros, such as may occur for categorical explanatory variables.

Then, partitioning X may result in Xi that has columns with all zeros, which presents a prob-

lem when computing logjX0iV
� 1

i;i Xij for composite likelihood, but not when using Vpart.

The SPIN indexing can also allow for faster inversion of the covariance matrix when esti-

mating fixed effects, but that requires some new results to obtain the proper standard errors of

the estimated fixed effects, which we describe next.

Estimation of β
The generalized least squares estimate for β was given in Eq (4). Although the inverse V−1 only

occurs once (as compared to repeatedly when optimizing the REML equations), it will still be

computationally prohibitive if a data set has thousands of samples. Note that under the parti-

tioned model, Eq (9) with covariance matrix Eqs (10), (4), is,

β̂bd ¼ T� 1

xx txy ð11Þ
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where Txx ¼
PP

i¼1
X0iV̂

� 1
i;i Xi and txy ¼

PP
i¼1

X0iV̂
� 1
i;i yi. This is a “pooled estimator” of β across

the partitions. This should be a good estimator of β at a much reduced computational cost. It

will also be convenient to show that Eq (11) is linear in y, by noting that

β̂bd ¼ T� 1

xx X1V̂ � 1
1;1
jT� 1

xx X2V̂ � 1
2;2
j . . . jT� 1

xx XPV̂ � 1
P;P

h i

y
1

y
2

..

.

yP

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ Qy ð12Þ

To estimate the variance of β̂bd we cannot ignore the correlation between the partitions, so

we consider the full covariance matrix Eq (8). If we compute the covariance matrix for Eq (11)

under the full covariance matrix Eq (8), we obtain

^varðβ̂bdÞ ¼ T� 1

xx þ T� 1

xx WxxT
� 1

xx ð13Þ

where Wxx ¼
PP� 1

i¼1

PP
j¼iþ1
½X0iV

� 1

i;i Vi;jV
� 1

j;j Xj þ ðX
0

iV
� 1

i;i Vi;jV
� 1

j;j XjÞ
0
�. Note that while we set parts

of V = 0 Eq (10) in order to estimate θ and β, we computed the variance of β̂ using the full V

in Eq (8). Using a plug-in estimator, whereby θ is replaced by θ̂, no further inverses of any Vi,j

are required if all V� 1

i;i are stored as part of the REML optimization. There is only a single addi-

tional inverse required, which is R × R, where R is the rank of the design matrix X, and is

already computed for T� 1

xx in Eq (11). Also note that if we simply substituted Eq (10) into Eq

(5), then we obtain only T� 1

xx as the variance of β̂bd. In Eq (13), T� 1

xx WxxT
� 1

xx is the adjustment

that is required for correlation among the partitions for a pooled estimate of β̂bd. Partitioning

of the spatial linear model allows computation from Eq (11), but then going back to the full

model for developing Eq (13), which is a new result. This can be contrasted to the approaches

for variance estimation of fixed effects using pseudo likelihood, composite likelihood, and

divide and conquer found in the earlier literature review.

Eq (13) is quite fast and grows linearly for computing the number of inverse matrices V� 1

i;i

(that is, if observed sample size is 2n, then there are twice as many inverses as a sample of size

n, if we hold partition size fixed). Also note that all inverses may already be computed as part

of REML estimation of θ. However, Eq (13) is quadratic in pure matrix computations due to

the double sum in Wxx. These can be made parallel, but may take too long for more than about

100,000 samples. One alternative is to use the empirical variation in β̂i ¼ ðX
0

iV̂
� 1
i;i XiÞ

� 1X0iV̂
� 1
i;i yi,

where the ith matrix calculations are already needed for Eq (11) and β̂i can be simply com-

puted and stored. Then, let

^varalt1ðβ̂bdÞ ¼
1

PðP � 1Þ

XP

i¼1

ðβ̂ i � β̂bdÞðβ̂ i � β̂bdÞ
0

ð14Þ

which has been used before for partitioned data, e.g. [64]. A second alternative is to pool the

estimated variances of each β̂i, which are ^varðβ̂ iÞ ¼ ðX
0

iV̂
� 1
i;i XiÞ

� 1
, to obtain

^varalt2ðβ̂bdÞ ¼
1

P2

XP

i¼1

^varðβ̂iÞ ð15Þ

where the first P in the denominator is for averaging individual ^varðβ̂iÞ, and the second P is

PLOS ONE Indexing and partitioning the spatial linear model for large data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0291906 November 1, 2023 9 / 26

https://doi.org/10.1371/journal.pone.0291906


the reduction in variance due to averaging β̂ i. Eqs (13)–(15) are tested and compared below

using simulations.

Point prediction

The predictor for Y(s0) was given in Eq (6). As for estimation, the inverse V−1 only occurs

once (as compared to repeatedly when optimizing to obtain the REML estimates). If the data

set has tens of thousands of samples, it will still be computationally prohibitive. Note that

under the partitioned model, Eq (9), that assumes zero correlation among partitions, Eq (10),

from Eq (6) the predictor is,

Ŷ ðs0Þ ¼ x0
0
β̂bd þ tcy � t0xcβ̂bd ð16Þ

where β̂bd is obtained from Eq (11), tcy ¼
PP

i¼1
ĉ0iV

� 1

i;i yi, txc ¼
PP

i¼1
X0iV

� 1

i;i ĉi, and

ĉi ¼ ^covðYðs0Þ; yiÞ, using the same autocorrelation model and parameters as for V̂. Even

though the predictor is developed under the block diagonal matrix Eq (10), the true prediction

variance can be computed under Eq (8), as we did for estimation. However, the performance

of these predictors turned out to be quite poor.

We recommend point predictions based on local data instead, which is an old idea, e.g.

[43], and has already been implemented in software for some time, e.g. [10]. The local data

may be in the form of a spatial limitation, such as a radius around the prediction point, or by

using a fixed number of nearest neighbors. For example, the R [65] package nabor [66] finds

nearest neighbors among hundreds of thousands of samples very quickly. Our method will be

to use a single set of global covariance parameters as estimated under the covariance matrix

partition Eq (10), and then predict with a fixed number of nearest neighbors. We will investi-

gate the effect due to the number of nearest neighbors through simulation.

A purely local predictor lacks model coherency, as discussed in the literature review section.

We use a single θ̂ for covariance, but there is still the issue of β̂. As seen in Eq (6), estimation

of β is implicit in the prediction equations. If yj� y are data in the neighborhood of prediction

location sj, then using Eq (6) with local yj is implicitly adopting a varying coefficient model for

β̂, making it also local, so call it β̂ j, and it will vary for each prediction location sj. A further

issue arises if there are categorical covariates. It is possible that a level of the covariate is not

present in the local neighborhood, so some care is needed to collapse any columns in the

design matrix that are all zeros. These are some of the issues that call to question the “coher-

ency” of a model when predicting locally.

Instead, as for estimating the covariance parameters, we will assume that the goal is to have

a single global estimate of β. Then we take as our predictor for the jth prediction location,

Ŷ ‘ðsjÞ ¼ x0jβ̂bd þ ĉ 0jV̂
� 1
j ðyj � Xjβ̂bdÞ ð17Þ

where Xj and V̂ j are the design and covariance matrices, respectively, for the same neighbor-

hood as yj, xj is a vector of covariates at prediction location j, ĉ j ¼ covðYðsjÞ; yjÞ (using the

same autocorrelation model and parameters as for V̂ j), and β̂bd was given in Eq (11). It will be

convenient for block kriging to note that if we condition on V̂ j being fixed, then Eq (17) can

be written as a linear combination of y, call it λ0jy, similar to η0
0
y as mentioned after Eq (6). Sup-

pose there are m neighbors around sj, so yj is m × 1. Let yj = Njy, where Nj is a m × n matrix of
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zeros and ones that subset the n × 1 vector of all data to only those in the neighborhood. Then

Ŷ ‘ðsjÞ ¼ x0jQy þ ĉ 0jV̂
� 1
j Njy � ĉ0jV̂

� 1
j XjQy ¼ λ0jy ð18Þ

where Q was defined in Eq (12).

Let Ĉ be an estimator of varðβ̂bdÞ in Eqs (13), (14), or 15), then the prediction variance of

Eq (17) is varðYðsjÞ � Ŷ ‘ðsjÞÞ when using the local neighborhood set of data, which is

^varðŶ ‘ðsjÞÞ ¼ Eβ̂bd

h
varfyj;YðsjÞg

�
YðsjÞ � x0jβ̂bd � ĉ 0jV̂

� 1
j ðyj � Xjβ̂bdÞjβ̂bd

�i
þ

varβ̂bd

h
Efyj;YðsjÞg

�
YðsjÞ � x0jβ̂bd þ ĉ 0jV̂

� 1
j ðyj � Xjβ̂bdÞjβ̂bd

�i

¼ ŝ2 � ĉ 0jV̂
� 1
j ĉ j þ ðxj � X0jV̂

� 1
j ĉ jÞ

0Ĉðxj � X0jV̂
� 1
j ĉ jÞ

ð19Þ

where ŝ2 is the estimated value of var(Y(sj)) using θ̂ and the same autocorrelation model that

was used for V̂. Eq (19) can be compared to Eq (7).

Block prediction

None of the literature reviewed earlier considered block prediction, yet it is an important goal

in many applications. In fact, the origins of kriging were founded on estimating total gold

reserves in the pursuit of mining [9]. The goal of block prediction is to predict the average

value over a region, rather than at a point. If that region is a compact set of points denoted as

B, then the random quantity is

YðBÞ ¼
1

jBj

Z

B
YðsÞds ð20Þ

where jBj ¼
R

B1 ds is the area of B. In practice, we approximate the integral by a dense set of

points on a regular grid within B. Let us call that dense set of points

D ¼ fsj; j ¼ nþ 1; . . . ;Ng, where recall that {sj;j = 1, . . ., n} are the observed data. Then the

grid-based approximation to Eq (20) is YD ¼ ð1=NÞ
P

j2DYðsjÞ with generic predictor

ŶD ¼
1

N

X

j2D

Ŷ ðsjÞ

We are in the same situation as for prediction of single sites, where we are unable to invert

the covariance matrix of all n observed locations for predicting

fŶ ðsjÞ; j ¼ nþ 1; nþ 2; . . . ;Ng. Instead, let us use the local predictions as developed in the

previous section, which we will average to compute the block prediction. Let the point predic-

tions be a set of random variables denoted as fŶ ‘ðsjÞ; j ¼ nþ 1; nþ 2; . . . ;Ng. Denote yo a

vector of random variables for observed locations, and yu a vector of unobserved random vari-

ables on the prediction grid D to be used as an approximation to the block. Recall that we can

write Eq (18) as Ŷ ‘ðsjÞ ¼ λ0jyo. We can put all λj into a large matrix,

W ¼

λ0
1

λ0
2

..

.

λ0N

0

B
B
B
@

1

C
C
C
A

ðN� nÞ�n

PLOS ONE Indexing and partitioning the spatial linear model for large data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0291906 November 1, 2023 11 / 26

https://doi.org/10.1371/journal.pone.0291906


The average of all predictions, then, is

ŶD ¼ a0Wyo ð21Þ

where a = (1/N, 1/N, . . ., 1/N)0. Let a0∗ ¼ a0W, and so the block prediction a0∗yo is also linear in yo.

Let the covariance matrix for the vector ðy0o; y
0
uÞ
0
be

V ¼
Vo;o Vo;u
Vu;o Vu;u

� �

where Vo,o = V in Eq (8). Then, assuming unbiasedness, that is,

Eða0∗yoÞ ¼ Eða0yuÞ ) a∗Xoβ ¼ aXuβ, where Xo and Xu are the design matrices for the observed

and unobserved variables, respectively, then the block prediction variance is

Eða0∗yo � a0yuÞ
2
¼ a0∗Vo;oa∗ � 2a0∗Vo;uaþ a0Vu;ua ð22Þ

Although the various parts of V can be very large, the necessary vectors can be created on-

the-fly to avoid creating and storing the whole matrix. For example, take the third term in Eq

(22). To make the kth element of vector Vu,ua, we can create the kth row of Vu,u, and then take

the inner product with a. This means that only the vector Vu,ua must be stored. We then sim-

ply take this vector as an inner product with a to obtain a0Vu,ua. Also note that computing Eq

(21) grows linearly with observed sample size n due to fixing the number of neighbors used for

prediction, but Eq (22) grows quadratically, in both n and N, simply due to the matrix dimen-

sions in Vo,o and Vu,u. We can control the growth of N by choosing the density of the grid

approximation, but it may require subsampling of yo if the number of observed data is too

large. We often have very precise estimates of block averages, so this may not be too onerous if

we have hundreds of thousands of observations.

The SPIN method

As we have shown, SPIN is a collection of methods for covariance parameter estimation, fixed

effects estimation, and point and block prediction, based on spatial indexing. SPIN, as

described above, estimates covariance parameters using REML, given by Eq (3), with a valid

autocovariance model [e.g., Eq (2) used in a partitioned covariance matrix, given by Eq (10)].

Using these estimated covariance parameters, we estimate β using Eq (11), with estimated

covariance matrix, Eq (13), unless explicitly stating the use of Eqs (14) or (15). For point pre-

diction, we use Eq (17) with estimated variance Eq (19), unless explicitly stating the purely

local version for β̂ given by Eq (6) with estimated variance Eq (7). For block prediction, we use

Eq (21) with Eq (22).

Simulations

To test the validity of SPIN, we simulated n spatial locations randomly within the [0, 1] × [0, 1]

unit square to be used as observations, and we created a uniformly-spaced (N − n) = 40 × 40

prediction grid within the unit square.

We simulated data with two methods. The first simulation method created data sets that

were not actually very large, using exact geostatistical methods that require the Cholesky

decomposition of the covariance matrix. For these simulations, we used the spherical autoco-

variance model to construct V,

cov½εðsiÞ; εðsjÞ� ¼ t
2 1 �

3di;j

2r
þ

d3
i;j

2r3

� �

Iðdi;j < rÞ þ Z2Iðdi;j ¼ 0Þ ð23Þ
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where terms are defined as in Eq (2). To simulate normally-distributed data from N(0, V), let

L be the lower triangular matrix such that V = LL0. If vector z is simulated as independent stan-

dard normal variables, then ε = Lz is a simulation from N(0, V). Unfortunately, computing L

is an Oðn3Þ algorithm, on the same order as inverting V, which limits the size of data for simu-

lation. Fig 2a and 2b shows two realizations from N(0, V), where the sample size was n = 2000

and the autocovariance model, Eq (23), had a τ2 = 10, ρ = 0.5, and η2 = 0.1. Each simulation

took about 3 seconds. Note that when including evaluation of predictions, simulations are

Fig 2. Examples of simulated surfaces used to test methods. (a) and (b) are two different realizations of 2000 values from the GEOSTAT method with

a range of 2. (c) and (d) are two realizations of 100,000 values from the SUMSINE method. Bluer values are lower, and yellower areas are higher.

https://doi.org/10.1371/journal.pone.0291906.g002
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required at all N spatial locations. We call this the GEOSTAT simulation method. For all simu-

lations, we fixed τ2 = 10 and η2 = 0.1, but allowed ρ to vary randomly from a uniform distribu-

tion between 0 and 2.

We created another method for simulating spatially patterned data for up to several million

records. Let S = [s1, s2] be the 2-column matrix of the spatial coordinates of data, where s1 is

the first coordinate, and s2 is the second coordinate. Let

S∗ ¼ ½s∗
1
; s∗

2
� ¼ S

cosðU1;ipÞ � sinðU1;ipÞ

sinðU1;ipÞ cosðU1;ipÞ

� �

be a random rotation of the coordinate system by radian U1,iπ, where U1,i is a uniform random

variable. Then let

εi ¼ U2;i 1 �
i � 1

100

� �

sinðiU3;i2p½s
∗
1
þ U4;ip�Þ þ sinðiU5;i2p½s

∗
2
þ U6;ip�Þ

� �
ð24Þ

which is a 2-dimensional sine wave surface with a random amplitude (due to uniform random

variable U2,i), random frequencies on each coordinate (due to uniform random variables U3,i

and U5,i), and random shifts on each coordinate (due to uniform random variables U4,i and

U6,i). Then the response variable is created by taking ε ¼
P100

i¼1
εi, where expected amplitudes

decrease linearly, and expected frequencies increase, with each i. Further, the ε were standard-

ized to zero mean and a variance of 10 for each simulation, and we added a small independent

component with variance of 0.1 to each location, similar to the nugget effect η2 for the GEO-

STAT method. Fig 2c and 2d shows two realizations from the sum of random sine-wave sur-

faces, where the sample size was 100,000. Each simulation took about 2 seconds. We call this

the SUMSINE simulation method.

Thus, random errors, ε, for the simulations were based on GEOSTAT or SUMSINE meth-

ods. In either case, we created two fixed effects. A covariate, x1(si), was generated from stan-

dard independent normal-distributions at the si locations. A second spatially-patterned

covariate, x2(si), was created, using the same model, but a different realization, as the random

error simulation for ε. Then the response variable was created as,

YðsiÞ ¼ b0 þ b1x1ðsiÞ þ b2x2ðsiÞ þ εðsiÞ ð25Þ

for i = 1, 2, . . ., for a specified sample size n, or N (if wanting simulations at prediction sites),

and β0 = β1 = β2 = 1.

Evaluation of simulation results

For one summary of performance of fixed effects estimation, we consider the simulation-

based estimator of root-mean-squared error,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k¼1

ðb̂p;k � bpÞ
2

s

for the kth simulation among K, where b̂p;k is the kth simulation estimate for the pth β parame-

ter, and βp is the true parameter used in simulations. We only consider β1 and β2 in Eq (25).

The next simulation-based estimator we consider is 90% confidence interval coverage,

CI90 ¼
1

K

XK

k¼1

I b̂p;k � 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^varðb̂p;kÞ

q

< bp < b̂p;k þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^varðb̂p;kÞ

q� �
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To evaluate point prediction we also consider the simulation-based estimator of root-mean-

squared prediction error,

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K � 1600

XK

k¼1

X1600

j¼1

ðŶ kðsjÞ � ykðsjÞÞ
2

v
u
u
t

where Ŷ kðsjÞ is the predicted value at the jth location for the kth simulation and yk(sj) is the

realized value at the jth location for the kth simulation. The final summary that we consider is

90% prediction interval coverage,

PI90 ¼
1

K � 1600

XK

k¼1

X1600

j¼1

I Ŷ kðsjÞ � 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^varðŶ kðsjÞÞ
q

< ykðsjÞ < Ŷ kðsjÞ þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^varðŶ kðsjÞÞ
q� �

where ^varðŶ kðsjÞÞ is an estimator of the prediction variance.

Effect of partition method

We wanted to test SPIN over a wide range of data. Hence, we simulated 1000 data sets where

simulation method was chosen randomly, with equal probability, between GEOSTAT and

SUMSINE methods. If GEOSTAT was chosen, a random sample size between 1000 and 2000

was generated. If SUMSINE was chosen, a random sample size between 2000 and 10,000 was

generated. Thus, throughout the study, the simulations occurred over a wide range of parame-

ters, with two different simulation methods and randomly varying autocorrelation. In all

cases, the error models fitted to the data were misspecified, because we fitted an exponential

autocorrelation model to the true models, GEOSTAT and SUMSINE, that generated them.

This should provide a good test of the robustness of the SPIN method and provide fairly gen-

eral conclusions on the effect of partition method.

After simulating the data, we considered 3 indexing methods. One was completely random,

the second was spatially compact, and the third was a mixed strategy, starting with compact,

and then 10% were randomly reassigned. To create compact data partitions, we used k-means

clustering [67] on the spatial coordinates. K-means has the property of minimizing within

group variances and maximizing among group variances. When applied to spatial coordinates,

k-means creates spatially compact partitions. An example of each partition method is given in

Fig 3. We created partition sizes that ranged randomly from a target of 25 to 225 locations per

group (k-means has some variation in group size). It is possible to create one partition for

covariance estimation, and another partition for estimating fixed effects. Therefore we consid-

ered all nine combinations of the three partition methods for each estimation method.

Table 3 shows performance summaries for the three partition methods, for both fixed effect

estimation and point prediction, over wide-ranging simulations when using SPIN with 50

nearest-neighbors for predictions. It is clear that, whether for fixed effect estimation, or predic-

tion, the use of compact partitions was the best option. The worst option was random parti-

tioning. The mixed approach was often close to compact partitioning in performance.

Effect of partition size

Next, we investigated the effect of partition size. We only used compact partitions, because

they were best, and we used partition sizes of 25, 50, 100, and 200 for both covariance parame-

ter estimation and fixed effect estimation, and again used 50 nearest-neighbors for predictions.

We simulated data in the same way as above, and used the same performance summaries.

Here, we also included the average time, in seconds, for each estimator. The results are shown
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in Table 4. In general, larger partition sizes had better RMSE for estimating covariance param-

eters, but the gains were very small after size 50. For fixed effects estimation, partition size of

50 was often better than 100, and approximately equal to size 200. For prediction, RMSPE was

lower as partition size increased. In terms of computing speed, covariance parameter estima-

tion was slower as partition size increased, but fixed effect estimation was faster as partition

size increased (because of fewer loops in Eq (13). Partition sizes of 25 often had poor coverage

in terms of both CI90 and PI90, but coverage was good for other partition sizes. Based on

Tables 3 and 4, one good overall strategy is to use compact partitions of block size 50 for

covariance parameter estimation, and block size 200 for fixed effect estimation, for both effi-

ciency and speed. Note that when partition size is different for fixed effect estimation from

covariance parameter estimation, new inverses of diagonal blocks in Eq (10) are needed. If

Fig 3. Illustration of three methods for partitioning data. Sample size was 1000, and the data were partitioned into 5 groups of 200 each. (a) Random

assignment to group. (b) K-means clustering on x- and y-coordinates. (c) K-means on x- and y-coordinates, with 10% randomly re-assigned from each

group. Each color represents a different grouping.

https://doi.org/10.1371/journal.pone.0291906.g003

Table 3. Effect of partition method.

COPE FEFE RMSE1 RMSE2 RMSPE CI901 CI902 PI90

RAND RAND 0.1407 0.4133 6.650 0.8980 0.8540 0.9157

COMP 0.1244 0.2975 6.649 0.9210 0.8490 0.9157

MIXD 0.1261 0.3382 6.649 0.9160 0.8500 0.9157

COMP RAND 0.1416 0.4020 6.406 0.9000 0.9210 0.9053

COMP 0.1196 0.2858 6.405 0.9170 0.8910 0.9053

MIXD 0.1214 0.3234 6.405 0.9110 0.9040 0.9052

MIXD RAND 0.1408 0.4154 6.406 0.8950 0.8900 0.9058

COMP 0.1197 0.2886 6.405 0.9150 0.8800 0.9058

MIXD 0.1212 0.3300 6.405 0.9100 0.8810 0.9059

Results using 1000 simulations as described in the text. The first column of the table gives data partition method for the covariance parameter estimation (COPE) using

REML, which was one of random partitioning (RAND), compact partitioning (COMP), or a mix of compact with 10% randomly distributed (MIXD). The second

column of the table uses covariance parameters as estimated in the first row, and gives the data partition method for fixed effects estimation (FEFE), which was one of

RAND, COPE, or MIXD. RMSE, RMSPE, CI90, and PI90 are described in the text. RMSE1 and RMSE2 are for the first (spatially independent) and second (spatially

patterned) covariates, respectively. Similarly, CI901 and CI902 are for first and second covariates, respectively.

https://doi.org/10.1371/journal.pone.0291906.t003
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partition size is the same for fixed effect and covariance parameter estimation, inverses of diag-

onal blocks can be passed from REML to fixed effects estimation, so another good strategy is

to use block size 50 for both fixed effect and covariance parameter estimation.

Variance estimation for fixed effects

In the section on estimating β, we described three possible estimators for the covariance matrix

of β̂bd, with Eq (13) being theoretically correct, and faster alternatives Eqs (14) and (15). The

alternative estimators will only be necessary for very large sample sizes, so to test their efficacy

we simulated 1000 data sets with random sample sizes, from 10,000 to 100,000, using the

SUMSINE method. We then fitted the covariance model, using compact partitions of size 50,

and fixed effects, using partition sizes of 25, 50, 100, and 200. We computed the estimated

covariance matrix of the fixed effects using Eqs (13)–(15), and evaluated performance based

on 90% confidence interval coverage.

Results in Table 5 show that all three estimators, at all block sizes, have confidence interval

coverage very close to the nominal 90% when estimating β1, the independent covariate. How-

ever, when estimating the spatially-patterned covariate, β2, the theoretical estimator has proper

coverage for block sizes 50 and greater, while the two alternative estimators have proper cover-

age only for block size 50. It is surprising that the results for the alternative estimators are so

specific to a particular block size, and these estimators warrant further research.

Prediction with global estimate of β
In the sections on point and block prediction, we described prediction using both a local esti-

mator of β, and the global estimator β̂bd. To compare them, and examine the effect of the

Table 4. Effect of partition sizes.

COPE FEFE RMSE1 RMSE2 RMSPE CI901 CI902 PI90 TIMEC TIMEF

25 25 0.147 0.645 6.77 0.938 0.845 0.932 2.821 3.328

25 50 0.131 0.340 6.77 0.955 0.807 0.932 2.821 1.249

25 100 0.133 0.372 6.77 0.930 0.833 0.932 2.821 0.758

25 200 0.130 0.346 6.77 0.938 0.810 0.932 2.821 0.730

50 25 0.146 0.593 6.14 0.943 0.963 0.909 3.031 3.328

50 50 0.121 0.290 6.13 0.897 0.900 0.909 3.031 1.249

50 100 0.122 0.309 6.13 0.912 0.922 0.908 3.031 0.758

50 200 0.120 0.288 6.13 0.917 0.922 0.909 3.031 0.730

100 25 0.143 0.634 6.13 0.930 0.882 0.906 4.802 3.328

100 50 0.121 0.304 6.13 0.900 0.885 0.907 4.802 1.249

100 100 0.122 0.322 6.13 0.905 0.917 0.906 4.802 0.758

100 200 0.120 0.299 6.13 0.910 0.910 0.906 4.802 0.730

200 25 0.144 0.637 6.13 0.927 0.877 0.905 12.760 3.328

200 50 0.121 0.300 6.13 0.897 0.887 0.905 12.760 1.249

200 100 0.122 0.322 6.13 0.905 0.905 0.905 12.760 0.758

200 200 0.120 0.300 6.13 0.907 0.902 0.905 12.760 0.730

Results are based on 1000 simulations, using the same simulation parameters as in Table 3. The first column of the table gives data partition sizes for the covariance

parameter estimation (COPE), and the second column gives data partition size for fixed effects estimation (FEFE), while using covariance parameters as estimated in the

first column. The columns RMSE1, RMSE2, RMSPE, CI901, CI902, and PI90 are the same as in Table 3. TIMEC is the average time, in seconds, for covariance parameter

estimation, and TIMEF is the average time, in seconds, for fixed effects estimation.

https://doi.org/10.1371/journal.pone.0291906.t004
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number of nearest neighbors, we simulated 1000 data sets as described in earlier, using com-

pact partitions of size 50 for both covariance and fixed-effects estimation. We then predicted

values on the gridded locations with 25, 50, 100, and 200 nearest neighbors.

Results in Table 6 show that prediction with the global estimator β̂bd had smaller RMSPE,

especially with smaller numbers of nearest neighbors. As expected, predictors have lower

RMSPE with more nearest neighbors, but gains are small after block size 50. Prediction inter-

vals for both methods had proper coverage. The local estimator of β was faster because it used

the local estimator of the covariance of β, while predictions with β̂bd needed the global covari-

ance estimator (Eq 13) to be used in Eq (19). Higher numbers of nearest neighbors took longer

to compute, especially with numbers greater than 100. Of course, predictions for the block

average had much smaller RMSPE than points. Again, prediction got better when using more

nearest neighbors, but improvements were small with more than 50. Computing time for

block averaging increased with number of neighbors, especially when greater than 100, and

took longer than point predictions.

A comparison of methods

To compare methods, we simulated 1000 data sets using GEOSTAT (partial sill was 10, range

was 0.5 and nugget was 0.1) where we fix sample size at n = 1000, and the errors were standard-

ized before adding fixed effects. We compared 3 methods: 1) estimation and prediction using

the full covariance matrix for all 1000 points, 2) SPIN with compact blocks of 50 for both

covariance and fixed effects parameter estimation, and 50 nearest-neighbors for prediction,

and 3) nearest-neighbor Gaussian processes (NNGP). NNGP had good performance in [16]

and software is readily available in the R package spNNGP [68]. For spNNGP, we used default

Table 5. CI90 for β1 and β2.

Part. Size β1 β2

Eq (13) Eq (14) Eq (15) Eq (13) Eq (14) Eq (15)

25 0.906 0.914 0.925 0.807 0.283 0.294

50 0.907 0.907 0.921 0.897 0.920 0.898

100 0.905 0.909 0.924 0.913 0.687 0.661

200 0.900 0.896 0.907 0.876 0.686 0.658

Results are based on 1000 simulations, using three different variance estimates, given by their equation numbers. Eq (13) is theoretically correct, while Eq (14) is based

on empirical variation in β̂ among partitions, and Eq (15) is based on averaging the covariance matrices of β̂ among partitions.

https://doi.org/10.1371/journal.pone.0291906.t005

Table 6. Effect of number of nearest neighbors for RMSPE and PI90.

nNN RMSPE1 RMSPE2 PI901 PI902 RMSPE3 PI903 Time1 Time2 Time3

25 6.62 6.36 0.908 0.907 0.204 0.912 0.6 2.4 6.9

50 6.45 6.33 0.907 0.907 0.201 0.907 1.2 3.0 7.5

100 6.37 6.32 0.907 0.907 0.201 0.904 4.4 6.3 10.5

200 6.34 6.31 0.907 0.907 0.200 0.905 23.9 25.7 29.0

Results are based on 1000 simulations, using the same simulation parameters as in Table 3. The first column of the table gives number of nearest neighbors. Time is

average computing time in seconds. The subscript 1 indicates a local estimator of β̂ using Eq (6), while subscript 2 indicates global estimator of β̂ using Eq (17). The

subscript 3 indicates the block predictor, Eq (21).

https://doi.org/10.1371/journal.pone.0291906.t006
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parameters for the conjugate prior method and a 25 × 25 search grid for phi and alpha, which

were the dimensions of the search grid found in [16]. We stress that we do not claim this to be

a definitive comparison among methods, as the developers of NNGP could surely make adjust-

ments to improve performance. Likewise, partition size and number of nearest neighbors for

prediction could be adjusted to optimize performance of SPIN for any given simulation or

Table 7. Comparison of 3 methods for fixed effects estimation and point prediction.

Method RMSE1 RMSE2 RMSPE CI901 CI902 PI90 TIME

Full 0.0088 0.0359 0.292 0.893 0.903 0.899 110.2

SPIN 0.0090 0.0380 0.292 0.908 0.913 0.906 3.0

NNGP 0.0090 0.0381 0.294 0.888 0.881 0.905 21.8

Data were simulated from 1000 random locations with a 40 × 40 prediction grid. The first column of the table gives the method, where Full uses the full 1000 × 1000

covariance matrix, SPIN uses spatial partitioning with compact blocks of size 50 and 50 nearest-neighbor prediction points. NNGP uses default parameters from R

package for the conjugate prior method with a 25 × 25 search grid on phi and alpha. The columns RMSE1, RMSE2, RMSPE, CI901, CI902, and PI90 are the same as in

Table 3. TIME is the average time, in seconds, for fixed effects estimation and prediction combined.

https://doi.org/10.1371/journal.pone.0291906.t007

Fig 4. Computing times as a function of sample size for three methods: 1) Full covariance matrix (black line), 2) NNGP (red line), and 3) SPIN

(green lines). For SPIN, the theoretically correct variance estimator (Eq 13) is solid green, while faster alternatives (Eqs 14 and 15) are dashed green.

https://doi.org/10.1371/journal.pone.0291906.g004
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data set. We offer these results to show that, broadly, SPIN and NNGP are comparable, and

very fast, with little performance lost in comparison to using the full covariance matrix.

Table 7 shows that RMSE for estimation of the independent covariate, and the spatially-pat-

terned covariate, were approximately equal for SPIN and NNGP, and only slightly worse than

the full covariance matrix. RMSPE for SPIN was equal to the full covariance matrix, and both

were just slightly better than NNGP. Confidence and prediction intervals for all three methods

were very close to the nominal 90%.

Fig 4 shows computing times, using 5 replicate simulations, for each method for up to

100,000 records. Both NNGP and SPIN can use parallel processing, but here we used a single

processor to remove any differences due to parallel implementations. Fitting the full covari-

ance matrix with REML, which is iterative, took more than 30 minutes with sample

sizes > 2500. Computing time for NNGP is clearly linear with sample size, while for SPIN, it is

quadratic when using Eq (13), but linear when using the alternative variance estimators for

fixed effects (Eqs 14 and 15). Using the alternative variance estimators, SPIN was about 10

times faster than NNGP, and even with quadratic growth when using Eq (13), SPIN was faster

than NNGP for up to 100,000 records.

Application to stream networks

We applied spatial indexing to covariance matrices constructed using stream network models

as described for the motivating example in the Introduction. These are variance component

models, with a tail-up component, a tail-down component, and a Euclidean-distance

Table 8. Fixed effects table for Mid-Columbia river data.

Effect b̂bd se(b̂bd) z-value Prob(> |z|)

Intercept 30.9324 5.8816 5.2592 < 0.00001

Elevation1 -4.0312 0.5052 -7.9787 < 0.00001

Slope2 -0.1504 0.0289 -5.2009 < 0.00001

Lakes3 0.5287 0.1003 5.2690 < 0.00001

Precipitation4 -0.0018 0.0004 -4.4639 0.00001

Northing5 -0.6315 0.3002 -2.1038 0.03565

Flow6 -0.1118 0.0217 -5.1429 < 0.00001

Drainage Area7 0.0363 0.0236 1.5400 0.12388

Canopy8 -0.0238 0.0033 -7.1280 < 0.00001

Air Temperature9 0.4538 0.0119 38.2106 < 0.00001

Discharge10 0.0031 0.0140 0.2227 < 0.82385

The seðβ̂bdÞ is the standard error using Eq (13). The z-value is the estimate divided by its standard error. Prob(> |z|) is the probability of getting the fixed effect estimate

if it were truly 0, assuming a standard normal distribution.
1 Elevation (m/1000) at sensor site
2 Slope (100m/m) of stream reach of sensor site
3 Percentage of watershed upstream of sensor site composed of lake or reservoir surfaces
4 Mean annual precipitation (mm) in watershed upstream of sensor site
5 Albers equal area northing coordinate (10km) of sensor site
6 Percentage of the base flow to total flow of sensor site
7 Drainage area (10,000 km2) upstream of sensor site
8 Riparian canopy coverage (%) of 1 km stream reach encompassing a sensor site
9 Mean annual August air temperature (˚C)
10 Mean annual August discharge (m3/sec)

https://doi.org/10.1371/journal.pone.0291906.t008
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component, each with 2 covariance parameters, along with a nugget effect; thus, there are 7

covariance parameters (4 partial sills, and 3 range parameters). A full covariance matrix was

developed for these models [69], and we easily adapted it for spatial partitioning. We used

compact blocks of size 50 for estimation, and 50 nearest neighbors for predictions. The 4 par-

tial sill estimates were 1.76, 0.40, 2.57, and 0.66 for tail-up, tail-down, Euclidean-distance, and

nugget effect, respectively. These indicate that tail-up and Euclidean-distance components

dominated the structure of the overall autocovariance, and both had large range parameters. It

took 7.98 minutes to fit the covariance parameters. The fitted fixed effects took an additional

2.15 minutes of computing time (Table 8), which are very similar to results found in [55]. Pre-

dictions for 65,099 locations are shown in Fig 5, which took 47 minutes.

Fig 5. Temperature predictions at 65,099 locations for the Mid-Columbia river. Yellower colors are higher values, while bluer colors are lower

values.

https://doi.org/10.1371/journal.pone.0291906.g005
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In summary, the original analysis [55] took 10 days of continuous computing time to fit

the model and make predictions with a full 9521 × 9521 covariance matrix. Using SPIN, fit-

ting the same model took about 10 minutes, with an additional 47 minutes for predictions.

Note that these models take more time than Euclidean distance alone because there are 7

covariance parameters, and the tail-up and tail-down models use stream distance, which takes

longer to compute. For this example, we used parallel processing with 8 cores when fitting

covariance parameters and fixed effects, and making predictions, which made analyses con-

siderably faster. We did not use block prediction, because that was not a particular goal for

this study. However, it is generally important, and has been used for estimating fish abun-

dance [70].

Discussion and conclusions

We have explored spatial partitioning to speed computations for massive data sets. We have

provided novel and theoretically correct development of variance estimators for all quantities.

We proposed a globally coherent model for covariance and fixed effects estimation, and then

use that model for improved predictions, even when those predictions are done locally based

on nearest neighbors. We include block kriging in our development, which is absent among

literature on big data for spatial methods.

Our simulations showed that, over a range of sample sizes, simulation methods, and range

of autocorrelation, spatially compact partitions are best. There does not appear to be a need for

“large blocks,” as used in [54]. A good overall strategy, that combines speed without giving up

much precision, is based on 50/50/50, where compact partitions of size 50 are used for both

covariance parameter estimation and fixed effects estimation, and 50 nearest neighbors are

used for prediction. This strategy compares very favorably with a default strategy for NNGP.

One benefit of the data indexing is that it extends easily to any geostatistical model with a

valid covariance matrix. There is no need to approximate a Gaussian process. We provided

one example for stream network models, but other examples include geometric anisotropy,

nonstationary models, spatio-temporal models (including those that are nonseparable), etc.

Any valid covariance matrix can be indexed and partitioned, offering both faster matrix inver-

sions and parallel computing, while providing valid inferences with proper uncertainty

assessment.
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